大数据与智慧城市专业,与智慧城市有关的大学专业有哪些
来源:整理 编辑:国外旅游攻略 2023-08-30 23:11:14
1,与智慧城市有关的大学专业有哪些
从技术发展的视角,智慧城市建设要求通过以移动技术为代表的物联网、云计算等新一代信息技术应用实现全面感知、泛在互联、普适计算与融合应用。但综合看,智慧城市经常与数字城市、感知城市、无线城市、智能城市、生态城市、低碳城市等区域发展概念相交叉,甚至与电子政务、智能交通、智能电网等行业信息化概念发生混杂。 有两种驱动力推动智慧城市的逐步形成,一是以物联网、云计算、移动互联网为代表的新一代信息技术,二是知识社会环境下逐步孕育的开放的城市创新生态。前者是技术创新层面的技术因素,后者是社会创新层面的社会经济因素。 因此,物联网技术或物联网工程专业、网络工程、信息工程、通信工程或通信技术、遥感、卫星定位专业方向、地理信息系统、多媒体、计算机技术等专业,都与智慧城市直接相关。
2,大数据专业是学什么
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。还需要学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。大数据专业主要学:统计学、数学、社会学、经济金融、计算机以中国人民大学为例基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。另外学习大数据必须要学习大数据中心常识,大数据技术体系很复杂,与物联网、移动互联网、人工智能、云核算等都有着精密的关系。所以,Haoop生态体系、HDFS技术、HBASE技术、Sqoop运 用流程、数据仓库东西HIV、大数据离线剖析Spark、Python言语、数据实时剖析Storm等都是学习大数据需要了解和掌握的。从事大数据工作,免不了要分析数据。如果从事数据剖析师,就需要了解一定的数学常识。需要有一定的公式核算能力,了解常用计算模型算法。而如果从事数据发掘工程师,就需要能够熟练运用各类算法,对数学的要求是很高的。
3,大数据是个什么专业能学到什么
1、大数据专业,一般是指大数据采集与管理专业;2、课程设置,大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Mapreduce的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。3、核心技术,(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Mapreduce、分布式数据库HBase、分布式数据仓库Hive。(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。(3)分布式数据处理。详细介绍分析Map/Reduce计算模型和Hadoop Map/Reduce技术的原理与应用。(4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。(6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。(7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。4、行业现状,今天,越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如百度、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。大数据是比较复杂的it行业,其实不只是大数据行业有前景。还有许多好的it行业。环艺,网络营销,编程。都是很好的专业。没有大数据复杂,学起来也轻松,。
4,从事大数据方向大学本科学什么专业比较好
您好,计算机专业学什么不重要,重要的是你是否喜欢,做你喜欢的事情,学你喜欢的,你才会做的更好,找准你的目标,一招鲜吃遍天。真要我推荐的话,时下比较火的是Oracle,因为一旦入了行,非常有前途,工资也不低;Java竞争力太大,太多年轻人在和你竞争,公司也愿意用便宜的新人;SA发展也不错,但是门槛要求太高,不像Oracle有先从初级DBA做起的机会。所以个人推荐学计算机学Oracle数据库专业,如果在大学期间就能去像CUUG这样的名机构深造一下,那比起其他应届生肯定是比较有优势了。以后想从事和大数据有关的行业,大学可以选择计算机类专业、软件工程之类的,也可以选择信息与计算科学、应用数学、信息与通信工程等专业我觉得你如果像钻研的话本科学数学是最好的一来打好基础二来以后想学什么研究生都能报毕业后能够从事企、事业单位数据库管理、软件开发您好,计算机专业学什么不重要,重要的是你是否喜欢有这么几个专业方向供你参考首先,数学方向,这个方向与大数据能够结合,数学建模在大数据的系统设计方面很有用其次,统计方向,简单说大数据是一种放大了的统计学再次,计算机方向,大数据系统的运行离不开计算机最后,软件工程方向,如何实现整个大数据系统的合理高效运行需要设计好了,根据你自己的想法和需求进行选择吧大数据(数据挖掘)是众多学科与统计学交叉产生的一门新兴学科。大数据牵扯的数据挖掘、云计算一类的,所以是数学一类的专业,现在本科数学类下辖子专业有[信息与计算科学],[数学与用用数学],[统计学]等。[统计学]是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。当今的”大数据“潮流使得我们获得了海量的数据,但掌握这些海量的数据本身并无意义。真正的意义体现在对于含有信息的数据进行专业化的处理。要对大数据进行处理,在实际的运用中,统计学能够以较低的成本,较少的数据,对数据进行精确度相对较高的的分析,这是大数据分析所无法替代的。[信息与计算科学]专业是以信息领域为背景用将迈向的数学与信息,管理相结合的交叉学科更深入和专业。所以你只需要查查有哪些大学开设了[统计学]、[信息与计算科学]这两个专业就行。
5,大数据专业主要学什么
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。以中国人民大学为例:基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。1、Java基础JAVA开发简介 基本语法、运算符 流程控制语句 数组 函数 面向对象 常用类库 异常 io系统 集合泛型 线程 网络编程 阶段测试2、JavaWebhtml+css; html5+css3; javascript; jquery; 数据库; JDBC; WEB服务器、开发工具-MyEclipse; HTTP协议; (数据库连接池)数据源; JavaWeb开发之Servlet、Servlet3.0; 请求与响应; JSP; MVC; 会话管理; 过滤和监听; 异步请求; 阶段测试3、JavaEE高级+Linux课程+分布式计算JavaWebJspring框架、mybatis框架、nio、JVM、maven框架、LINUX、MYSQL分库分表、读写分离、JAVA搜索引擎、Redis、消息队列、分布式计算框架、项目实战4、离线数据分析平台Hadoop初识Hadoop以及Hadoop生态系统、;Hadoop分布式文件系统HDFS、Hadoop的设计目标;分布式计算框架MapReduce;MapReduce应用程序的开发;数据仓库Hive的安装和使用、分桶作用、创建点击流数据数据仓库、点击流数据分析(HiveSql)5、实时数据分析平台Stormpython介绍、安装、基本操作、基本语法、数据结构、内建函数、异常、模块;Storm介绍、Storm应用场景及行业案例、Storm特点、Storm编程模型部署;Storm集群搭建、配置集群、通信机制;消息队列Kafka、使用Flume收集数据到Kafka、Mahout的离线计算数据、Kafka基础与常用API6、Scala语言与SparkScala;SparkStreaming、 SparkGraphX、Spark内核解析、Spark优化解析;Spark-Mllib机器学习、回归算法、决策树、推荐系统、分类算法等;升级Hive执行引擎为Spark、使用Spark Sql完成点击流日志业务需求、打通Spark数据收集、存储、计算、展示流程。首先是基础阶段。这一阶段包括:关系型数据库原理、LINUX操作系统原理及应用。在掌握了这些基础知识后,会安排这些基础课程的进阶课程,即:数据结构与算法、MYSQL数据库应用及开发、SHELL脚本编程。在掌握了这些内容之后,大数据基础学习阶段才算是完成了。接下来是大数据专业学习的第二阶段:大数据理论及核心技术。第二阶段也被分为了基础和进阶两部分,先理解基础知识,再进一步对知识内容做深入的了解和实践。基础部分包括:布式存储技术原理与应用、分布式计算技术、HADOOP集群搭建、运维;进阶内容包括:HDFS高可靠、ZOOKEEPER、CDH、Shuffle、HADOOP源码分析、HIVE、HBASE、Mongodb、HADOOP项目实战。完成了这部分内容的学习,学员们就已经掌握了大数据专业大部分的知识,并具有了一定的项目经验。但为了学员们在大数据专业有更好的发展,所学知识能更广泛地应用到大数据相关的各个岗位,有个更长远的发展前景。第三阶段叫做数据分析挖掘及海量数据高级处理技术。基础部分有:PYTHON语言、机器学习算法、FLUME+KAFKA;进阶部分有:机器学习算法库应用、实时分析计算框架、SPARK技术、PYTHON高级语言应用、分布式爬虫与反爬虫技术、实时分析项目实战、机器学习算法项目实战。以上便是大数据的主要学习内容。相信在掌握了以上大数据专业知识后,中公优就业的学员们一定能够在将来的工作中得心应手,完成自己的职业理想。
文章TAG:
大数据与智慧城市专业 与智慧城市有关的大学专业有哪些