大数据分析实现的目的,政府利用大数据分析可以实现什么功能
来源:整理 编辑:国外旅游攻略 2023-08-22 22:52:20
1,政府利用大数据分析可以实现什么功能
b,c,d 因为政府资金没有问题,所有面临的问题少因为政府拿大大数据后可以更好的进行行政管理最终获得的价值也最大-可以分析交通情况,人们的出行情况,然后对道路进行设计和规划。可以分析收入和开支情况,对相关产业进行调整。可以对企业的情况进行分析,对相关企业进行调整和扶持。
2,数据分析的目的是为了寻求质量管理体系改进的机会对吗
(对)数据分析的目的是为了寻求质量管理体系改进的机会。规范数据的收集、分析和应用,为质量管理体系的适宜性和有效性的判定,为寻求改进的机会提供证据。你好!改进是指为改善产品的特征及特性和或提高用于设计、生产和交付产品的过程的有效性和效率所开展的活动;持续改进是增强满足要求的能力的循环活动。持续改进的对象是质量管理体系。制定改进目标和寻求改进机会的过程是一个持续过程。该过程使用审仅代表个人观点,不喜勿喷,谢谢。
3,为什么需要大数据技术
企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。为成千上万的快递车辆规划实时交通路线,躲避拥堵。分析所有SKU,以利润最大化为目标来定价和清理库存。根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。从大量客户中快速识别出金牌客户。使用点击流分析和数据挖掘来规避欺诈行为。总之,大数据对企业精细运营起到的价值是非常巨大的,可以让企业在社交平台上的运营更加完善,尽量让企业能有一个理想的口碑,并对一些不良的言论做舆情监测等等。然后根据数据进行产品改进,并且利用大数据还能更好的驱动用户体验,促进企业运营目标朝着正确的方向前进,这都是大数据为企业带来的价值。随着大数据时代的到来,对大数据处理技术的要求肯定越来越高了,像唯脸预知服务系统他们就是用的一种集成软件处理数据。
4,数据分析到底能做什么转
通常企业用topbox(智投分析)之类的在线广告数据分析工具来做广告投放的分析,都能够清楚的了解到每天花了多少钱,钱花在哪里,产生了多少次咨询,预约了多少个患者都要形成一套完整的报表,方便调整搜索引擎广告投放策略。他们总关心一些专业词汇(arpu,pcu,还有很多我也不知道的英文字母组合),图表怎么做,excel工具怎么用,结论怎么写…下面我说说我是怎么看数据分析的:数据分析是一个方法,但不是唯一的方法数据分析的优点是相对客观,但是缺点也很明显,人力和时间成本很高。游戏里的数据分析无非就是要实现2个目的:1.发现现存问题的本质,并解决他(99%)2.发现一些趋势,以便未来做的更好(1%)其中第一个目的占99%!第二个目的我没见人专门做过,我自己也从来没有专门做过类似的事情,最多就是数据看多了,瞎猫碰上死耗子,发现点趋势来。所以数据分析主要是为了发现问题,解决问题而做的。发现问题和解决问题的方法有很多种,有时候数据分析并不是最好的办法。例如:新版本很快就要更新了,一还有一堆准备工作没有完成,这个时候你发现新出的装备卖的很不好,远远不如预期。如果你还花很多时间去分析为什么那个装备卖的不好,那你就耽误了更重要的新版本!当时间不够的时候,分清主次,别再数据分析上浪费时间。找不同类型的用户聊聊,基本就能发现主要的问题所在了。数据分析不是万能的数据分析能够发现代码的问题根源,但是很难解释用户的行为。点击打开大图 如上图中,当我们通过数据发现游戏里的大R流失了。数据能做的就已经到尽头了,数据无法告诉我们流失的具体原因。数据不能告诉我们用户是因为公司破产而停止玩游戏,还是因为跑去玩其他游戏了,还是因为玩累了不想玩了… 数据很多时候也解释不清楚,只是通过数据的不断细分,我们能把问题的范围缩小再缩小,而不是在茫茫大海里找一根针。 所以再牛B的数据分析师,如果不了解产品,不了解用户,也没用!数据分析不是把图表和文字堆砌出来就行了 见过很多数据分析:排版整洁,图表做的很漂亮,每页都有公司logo和版权说明,乍一看感觉好牛B! 但再一看内容,纯属一堆垃圾! 数据采样完全不科学 根本没有细分数据,只有一堆说明不了问题的宏观数据 没有任何对比数据 数据完全不能支撑“分析”得出的结论简单总结:结论全是主观臆断,跟堆砌的数据和图表完全无关。数据分析是一个很严谨的事情,每个结论都应该从数据中得出,数据不能说明的问题只能是猜测。所以当我们写下每一个结论的时候,一定要搞清楚这个是“我觉得是这样”,还是“我从数据中发现是这样”!
5,O2O中的大数据分析到底是分析啥的
线上数据主要包含:访问量(ip uv pv)、平均浏览时长(浏览量)、新uv比例、跳出率、转化率(注册、订单、支付)、流量来源(搜索、直接、连接、地区、推广)、网页打开时间、网站热点、搜索分析等。erp数据主要包含:订单量、客单价、毛利率、二次购买率、忠实顾客转化率、顾客流失率、动销率、缺货率、商品价格变化、sku数量变化、周转率、退货率、品类销售占比、会员注册量、注册会员转化率等。客服回访问卷投诉数据主要包含:投诉分类、ui印象、品类印象、价格印象、网站功能印象、物流体验印象、售后印象等。以上数据相互关联,比如分析促销活动效果时,需要分析访问量的变化,注册下单转化率的变化,促销商品和正常商品销量的变化。怎么分析数据?有的公司成立专门的数据分析部门,数据部门不仅提供数据,还要完成数据分析工作。这种工作方式,虽然基础数据准确,但分析结果可能有较大偏差。因为数据分析人员不熟悉业务,对各种信息的了解也不如市场部和运营部等业务部门。比如,某个品类销售占比突然降低,这可能是因为市场部推广方式的改变,也可能是遇到季节因素。如果数据分析人员不了解这些信息,则可能简单的判断成顾客不欢迎这类商品,并且做出建议商品部门降低这类商品占比的决定。更合理的数据分析方式是,由数据专员提供基础数据,由相关部门骨干人员共同分析,比如转化率降低,应该由市场部、运营部、商品部共同分析,得出是由哪些方面的因素造成的。对于新项目而言,可以引入目标分析法,目标分析法是以分析“新客引入成本”和“忠实顾客转化率”为核心,设定合理目标,以此判断商业模式是否可行。比如:某个投资5000万的b2c网站,推广预算是2500万元,目标是稳定达到每天5000单。忠实顾客的定义是平均每月购物一次,每天5000单的销售目标,需要15万忠实顾客。如果实际经营结果数据,新客引入成本是50元,忠实顾客转化率是30%,则要达到15万会员,需要2500万推广费用。通过数据分析可知当新客引入成本大于50元,忠实顾客转化率低于30%时,项目不能达到目标。如果目标和实际业绩数据相差不多,可以通过优化内功改善业绩,如果数据相差太大,则说明商业模式可能不可行,应该早点调整商业模式,并在试错过程中重复以上数据分析步骤。最重要的数据,我认为是流量引入成本,新客引入成本,忠实顾客转化率。流量引入成本数据主要考核市场部,新客引入成本数据由市场部、运营部、商品部共同负责,忠实顾客转化率主要由运营部和商品部负责。推广方面的分析包含流量分析,停留时间,流量页面,转化率分析。流量的增减(新uv数据)代表市场部推广工作是否有效,新客停留时间浏览页面量和转化率等数据,一定程度上代表了市场部推广是否有针对性。新客引入成本分析是推广效率重要的kpi,是每个达成目标投入的推广资金。比如某个推广方法带来了10000个uv,500个注册,100个订单。而这个方法耗费了1万元资金,则每个uv,注册,订单投入的资金分别是1元,20元,100元。这个推广方法的新客引入成本是100元。如何与数据分析结果match?市场部的重要工作是尝试不同的推广方式,计算每种推广的投资回报率,根据数据分析结果,重点投入和侧重优化投资回报率最高的推广方式。提升内功是新客引入成本与忠实顾客转化率优化的基本方法。内功包含:商品结构、促销方式、网站体验、物流体验、顾客回访投诉、会员营销等。商品结构优化目的是通过数据分析了解顾客需求,不断引进和淘汰商品,使商品结构尽量符合顾客需求。建立商品维度表,综合考虑商品所有维度,比如价格、型号、外形、品牌、规格等维度,把商品根据不同维度区分,数据分析各品类各维度的销售量,增加高销量维度商品品类占比,精简低销量维度商品品类占比。商品引进淘汰过程还受到很多因素影响,比如“结构商品”即使销量不好,也不能淘汰,“季节商品”需要把季节因素考虑进去。 促销方式主要依靠数据分析评估效果,每做一次主题促销,就在erp系统中建立促销单据,设置促销主题,促销商品,促销档期。通过bi工具分析促销商品销量变化,促销毛利损失,促销活动带动正常商品销量变化,促销活动带动新会员注册和老会员购物频次变化,综合评估促销效果,以此指导下一次促销活动。网站体验优化可以用一个公式表达:ueo(用户体验优化)= pv / or(站点跳出率),目的降低顾客跳出率,让顾客购物更加简单轻松。这是建立在对网站定位和顾客特点充分了解的基础之上,比如让网站的布局更加清晰,让顾客购物过程更加流畅。通过热点分析,了解顾客关注的位置,把顾客关注的内容放到热点区域。通过跳出率分析,在顾客容易跳出的页面显示推荐内容,吸引顾客继续留在网站。顾客印象问卷投诉数据分析能发现顾客不满意的地方,在网站建立投诉通道,客服部门要对新、老顾客回访。对生成订单、但最后没有提交订单的顾客回访,在ui、品类、价格、网站体验、物流、售后等方面统计数据,分析那个方面最影响顾客体验,根据实际情况逐条解决。不断优化。会员营销是把会员分成不同类型,根据会员特点营销。可以分为:注册未下单顾客、第一次下单顾客、忠实顾客、高价值顾客、流失顾客。注册未下单顾客,如果留有邮箱,要定向发一些大力度的优惠劵,吸引顾客首次下单,直观体验服务。第一次下单顾客要在包裹中放一些有提醒意义的礼品,比如印有广告的鼠标垫,随时提醒顾客,增加顾客二次下单机会。第一次下单顾客可能不清楚我们网站的主要卖点或优势,可以通过包裹或者邮件向顾客灌输这些信息。客服部门要对第一次下单顾客回访,了解他们的感受。忠实顾客是多次重复购买顾客,通过数据分析了解忠实顾客的所需所求,有针对性的做一些推荐,如果有足够的毛利空间,可以为忠实顾客寄送vip卡,维护忠实顾客。针对忠实顾客,发挥积分的作用,向忠实顾客推荐一些积分换购礼品,把忠实顾客发展成口碑推广员,如果忠实顾客邀请了新会员,要对忠实顾客做积分奖励。对流失顾客要针对性营销,了解顾客流失的原因,对流失顾客发优惠劵。高价值顾客购买频次不高,但客单价高,商品毛利高,对这类顾客要推荐高价值商品,如果用对待普通顾客的方式对高价值顾客营销,可能会有反效果。主要就是分析用户的位置数据,消费数据,还会员数据,及portal数据。这是商场的核心数据,如果能够好好利用,可以帮商场阶梯化定价,提高平效和拎包率。
文章TAG:
大数据分析实现的目的 政府利用大数据分析可以实现什么功能